
The Puppet Show
Managing Servers with Puppet

A gentle introduction to Puppet;
How it works,

What its benefits are
And how to use it

Robert Harker

harker@harker.com

mailto:harker@yahoo-inc.com

whoami
UNIX/Linux sysadmin for over 25 years

Known for sendmail classes

My puppet experience

I used puppet to migrate a gaming social site 1up.com to new hardware in a
lights-out data center.

Three types of servers:

Apache/Tomcat front end servers

Tomcat search servers

Terracotta caching servers

Two infrastructure servers:

Puppetmaster, named master, sendmail relay

Nagios, MRTG, cacti

Puppet is a configuration management tool
Written by Luke Kanies

Supported by Puppet Labs (formerly Reductive Labs)

Written in Ruby but Ruby skills not needed

Client/Server model:

puppetmasterd is the central management daemon

puppetd runs on each managed system (node)

Why this is better than homebrew scripts/ssh loops

Much more testing than a single site can do

Very active user/developer community

Companies are able to hire people that already understand the system

“Puppet, Make It So”
The goal of Puppet is to define the end state of the managed system (node)

This end state is defined by a set of related class data that build up a node
specific manifest

Puppetd running on each node inspects itself with factor which defines:
OS, network interfaces, IP addresses, file systems, architecture, hostname

The node uploads this information to the puppetmaster

The puppetmaster then uses the factor information to:

Define which resources (classes) need to be applied to the node

Evaluate the resources to make it specific to a node

Build up a node specific manifest and download it to the client

This may include files and templates that are available on the puppetmaster

“Puppet, Make It So” (cont.)
The node then uses this manifest to compare its current configuration to the

configuration defined in the manifest

Any differences are logged and corrected:
Download a file
Change owner or permissions
Install or deinstall an application
Enable or start a service

Because puppet strives to make the current state of the client be the same
as the state defined in the manifest, puppetd can be run multiple times
without corruption

Puppet is idempotent

Puppet Security Infrastructure
Puppetmasterd listens to port 8140

Puppet uses SSL for security

The puppetmaster includes a SSL certificate server

When a node starts up that does not have a certificate,
it sends a certificate request to the puppetmaster

The puppetmaster generates an SSL certificate and signs it

The puppetmaster returns the signed certificate to the node
The puppetmaster's public certificate is also returned

Certificates can be viewed and manipulated with puppetca

Puppet Architecture

Puppet Language

Puppet decouples the syntax of the configuration management tool from the
syntax of the underlying OS and applications

This is done with Puppet’s Resource Abstraction Layer (RAL)

The decoupling allows Puppet to define a high level idea like user,
application, or service

The Puppet RAL will translate that in to the commands required by the client
OS

Resources describe some aspect of a system

Each resource has a type, a title, and a list of attributes

Puppet Is A Declarative Language
Resource Types - Each resource is modeled as a type

Resources include services, packages, files, users, permissions, run state

Resource Types are independent of the underlying OS semantics

Providers how to implement a resource

Providers hide the underlying differences between OSes

Providers for the type 'package' include apt, yum, pkgadd

Resource providers actually perform the management functions

Puppet Language Structure
Puppet creates a graph based structure to define the relationships between

resources:

What resources depend on another

What order the resources should be evaluated

Whether a change in one resource requires an action by another resource
I.e. restarting a service if a config file changes

Puppet has a tool to print out these dependency graphs

Puppet Syntax
Resources are made up of a type, title and a series of attributes:
 file { 'sshd_config':

 owner => 'root',

 group => 'root',

 }

Type is file Title is sshd_config

Attributes define the owner and group as root

Puppet allows you to specify a local name in addition to the title:
file { 'sshd_config':

 name => $operatingsystem ? {

 solaris => '/usr/local/etc/ssh/sshd_config',

 default => '/etc/ssh/sshd_config',

 },

. . .

Puppet Syntax, Type[title]
The title of a resource can be used to refer to file resource

The resource will include its attributes and OS specific logic

You use the syntax:
 Type[title]

For example to define a service that depends on the file:
service { 'sshd':

 subscribe -> File[sshd_config],

}

subscribe tells Puppet to restart the service if its dependent resource is
changed

Puppet Syntax, Type[title] (cont.)
This syntax can also refer to several related resources of the same type
service { 'sshd':

 require -> File['sshd_config', authorized_keys'],

}

Require defines the dependency order:

Nothing can happen to the service sshd until the sshd_config and
authorized_keys files are correct

Puppet Can Manage Users And Groups

group { "harker":

ensure => present,

gid => 1318

}

user { "harker":

ensure => present,

gid => "harker",

groups => ["adm", "staff", "root"],

membership => minimum,

shell => "/bin/bash",

require => Group["harker"]

}

Puppet Nagios Types
Puppet can generate nagios configuration files based on node configuration

Nagios types supported:
nagios_servicedependency

nagios_hostescalation

nagios_serviceextinfo

nagios_hostgroup

nagios_hostextinfo

nagios_hostdependency

nagios_service

nagios_contactgroup

nagios_contact

nagios_command

nagios_timeperiod

nagios_servicegroup

nagios_host

nagios_serviceescalation

Resource Collections
Aggregation combines multiple resources into a new resource

Two ways to do this: Classes and definitions.

Classes model fundamental aspects of nodes

Classes define the resources that define an aspect of a node

Classes are are singletons are only evaluated once per node

Definitions can be reused many times on the same node

They work as custom created Puppet types

They can be evaluated multiple times with different inputs each time

You pass variable values into the defines.

Puppet Classes
Puppet classes define how to install and configure files, applications,

services, etc...

A class is defined with:
 class Title {

 }

Resources are then added to the class

Puppet Classes (cont.)
A class can have multiple resources:
class sshd {

 package { openssh-server: ensure => present } Installs the package

 file { 'sshd_config': Installs a configuration file

 name => $operatingsystem ? {

 solaris => '/usr/local/etc/ssh/sshd_config',

 default => '/etc/ssh/sshd_config',

 },

 owner => root,

 group => root,

 mode => 444,

 backup => false,

 source => "puppet:///files/etc/ssh/sshd_config",

 require => Package["openssh-server"],

 }

 service { "sshd": Starts the service

 enable => true ,

 ensure => running,

 subscribe => [Package[openssh-server], File["sshd_config"],],

 }

}

Puppet Modules
A Puppet Module is a reusable collection of resources, classes, files,

definitions and templates

A module by nature should be self-contained

A Puppet module has a specific directory structure:
MODULE_PATH/

 downcased_module_name/

 files/

 manifests/

 init.pp

 lib/

 puppet/

 parser/

 functions

 provider/

 type/

 facter/

 templates/

 README

Puppet Modules (cont.)
Each module must contain a init.pp manifest file

class ntpd {

 package { ntp: ensure => latest }

 service { ntp: ensure => running }

 file { "/etc/ntp/ntpservers":

 source => "puppet://
$servername/modules/ntp/ntpservers"

 }

 file { "/etc/ntp.conf":

 content => template("ntp/ntp.conf.erb")

 }

}

Module Structure For ntpd
MODULE_PATH/

 ntp/

 manifests/

 init.pp

 files/

 ntpservers

 templates/

 ntp.conf.erb

Puppet Templates

Modules can also edit files on the fly

In ntpd/templates/ntp.conf.erb:

 # /etc/ntp.conf, configuration for ntpd

 . . .

 fudge 127.127.1.0 stratum <%= local_stratum %>

 . . .

The ntpd module's init.pp recipe file:

. . .

 $local_stratum = $ntp_local_stratum ? {

 '' => 13,

 default => $ntp_local_stratum,

}

. . .

Puppet Manifests
Puppet has three types of manifests files:

Nodes: define which classes each managed node should use

Classes: action files that define what to do

Modules: reusable classes

Nodes define what packages, files and services should be installed

Classes and modules define what need to be done to install it

Classes and modules are added to a node with an include statement
 include sshd.pp

Nodes Have Inheritance
A complex node can be configured by inheriting a simpler node

I start with a basenode that all hosts inherit

This includes things I want done on all nodes:

Applications installed or removed

Services enabled or disabled

Site wide configuration files

You can then make a more complex node based on this inheritance

Webserver = basenode + apache

MySQLserver = basenode + MySQL

You can then make a specific node or host:

fooMysql = MySQLserver + foo specific additions

barMysql = MySQLserver + bar specific additions

/etc/puppet/manifests/nodes.pp
node 'basenode' {

 # nodefiles contain host specific files such as host ssh keys

 include nodefiles

 # Custom puppet configuration for puppetd nodes, not on puppetmaster

 include puppet-configs

 # Only download rpms from our private repos

 include yumrepos

 # Install and remove packages from the core OS install

 include baseapps

 # Enable and disable system services

 include basesrvcs

 # Classes that have custom configurations

 include iptables

 include hosts

 include nrpe

 include ntp

 include snmp

 include subversion

 include dell

 include sysfiles

 include sshd

 include rootfiles

 include java

}

###

Foo Domain and role nodes

###

node 'foodomain' inherits basenode {

 # Things that should be in all Foo servers that do not provide

 # datacenter infrstructure services like named, sendmail, etc

 # set the local servers we point to

 # Lets use FQDNs

 $my_puppet_server = "opssrv.bil.foo.com"

 $my_syslog_server = "nagios.bil.foo.com"

 $my_ntp_server = "opssrv.bil.foo.com"

 $my_local_network = "10.212.62.0/24"

 # These include statements are including classes

 # Order can be important, so be careful

 include named

 include sudo

 include passwd

 include homedirs

 include sendmail

}

Roles for different types of servers

node 'web-role' inherits foodomain {

 # Things that are specific to the apache servers

 include appsrv-role

 include appsrv-apache2

}

node 'tomcat-role' inherits foodomain {

 # Things that are specific to the tomcat servers

 include appsrv-tomcat

}

node 'web-tomcat-role' inherits foodomain {

 # A role that inherits apache

 # It needs the tomcat stuff repeated here as well

 include appsrv-role

 include appsrv-apache2

 include appsrv-tomcat

 include terracotta

}

node 'terracotta-role' inherits foodomain {

 # Things that are specific to the terracotta servers

 include terracotta

}

###

nodes that are actually hosts

###

node 'opssrv.bil.foo.com', 'mgmt.bil.foo.com' inherits basenode {

 # Things that are specific to the management server

 include opssrv

 include puppet-master-configs

}

node 'nagios-01.bil.foo.com' inherits basenode {

 # Things that are specific to the montoring server

 include httpd

 include nagios-server

}

node 'appsrv-01.bil.foo.com', 'appsrv-02.bil.foo.com',

 'appsrv-03.bil.foo.com', 'appsrv-04.bil.foo.com',

 'appsrv-05.bil.foo.com', 'appsrv-06.bil.foo.com',

 'appsrv-07.bil.foo.com', 'appsrv-08.bil.foo.com'

 inherits web-tomcat-role {

 # Things specific to the apache/tomcat applications servers

}

node 'tcsrv-01.bil.foo.com', 'tcsrv-02.bil.foo.com'

 inherits terracotta-role {

 # Things specific to the terracotta servers

 include tcsrv-role

}

node 'search-01.bil.foo.com' inherits tomcat-role {

 # Things specific to the tomcat search servers

 include search-role

 include search-tomcat

}

node 'download-01.bil.foo.com', 'download-02.bil.foo.com'

 inherits web-role {

 # Things specific to the apache download servers

 include download-role

 include download-apache2

}

Pros and Cons of Puppet
Pros:

Buzz in the Linux systems management community

OpenSource

Active development community

New features and modules added weekly

Cons:

Scalability

Factor running on the client is expensive

Manifest generation on the puppetmaster is expensive

Many desirable features missing

Dashboard is alpha, likely to be commercial product

Many systems administration tasks missing

